How does a Smith Chart work?

Microwave Engineering

http://sss-mag.com/pdf/smith_chart_basics.pdf

Smith Chart: Scale

- Wavelength Scale
- Degree Scale
- Reflection: REFL. COEF (VOL, PWR); Loss in dB (RETN, REFL)
- Transmission Loss: LOSS COEF., 1 dB steps
- Standing Wave: VOL. RATIO, IN DB

 $|\Gamma_g|^2 = P_r/P_i$ (at the source end) $|\Gamma_L|^2 = P_r'/P_i'$ (at the load end)

Smith Chart: Radial Scale

Smith Chart: ZY

- I/P Imp Z_IN using a known load Z_L
- I/P Imp using I/P reflection coeff<1
- I/P Imp using I/P reflection coeff>1
- Admittance from Imp
- Value and location of Z_max and Z_min from known Z_L
- Imp using single stubs
- Lumped: Series & Shunt

Admittance from Impedance

and
$$Z_N(x)=[1+\Gamma(x)]/[1-\Gamma(x)]$$
 and
$$Y_N(x)=1/Z_N(x)=[1-\Gamma(x)]/[1+\Gamma(x)]$$
 where
$$\Gamma(x)=\Gamma_L\ e^{j2\beta x}$$

 Y_N is located 180 deg opposite to Z_N on VSWR circle

Find the admittance value for an impedance value of $Z = 50 + j50 \Omega$, in a 50 Ω system.

$$Z_o = 50 \Omega \implies Y_o = 1/50 = 0.02 \text{ S}$$

$$Z_N = Z/Z_o = 1 + j1$$

$$Y_N = 0.5 - j0.5$$

 $Y = Y_o Y_N \implies Y = 0.01 - j0.01 \text{ S}$

Z-Y Conversion

 Value and Location of Z_max and Z_min from a known load Z_L.

$$\Gamma(x) = \Gamma_L \, e^{j2\beta x},$$
 where $\Gamma_L = |\Gamma_L| \, e^{j\theta}$. Therefore, we can write:
$$\Gamma(x) = |\Gamma_L| \, e^{j\phi(x)}, \quad \phi(x) = 2\beta x + \theta$$
 and
$$[Z_{IN}(x)]_N = Z_{IN}(x)/Z_o = [1 + \Gamma(x)]/[1 - \Gamma(x)]$$

 Max I/P Z_max occurs when Numerator is max and denominator is min

 $\Gamma(x) = |\Gamma_L| e^{j\phi(x)}$ is a positive real number, i.e., $\phi(x) = 0$,

$$(Z_{min})_N = 1/(Z_{max})_N = [1 - |\Gamma_L|]/[1 + |\Gamma_L|]$$

Input Impedance using single Stubs

For parallel Stubs

- 1. Locate Z_L on the Smith chart (use a ZY chart) at point A in Figure 10.25.
- 2. Draw the constant VSWR circle.
- 3. Travel a distance (d) toward the generator on the VSWR circle to arrive at point B.
- 4. Now because we are adding the parallel stub, we must switch to the Y-chart and travel on a constant conductance circle an amount equal to the susceptance of the stub to arrive at point C, as shown in Figure 10.25.
- 5. To find the input impedance, we switch back to the Z-chart and read off the normalized values (r, x) at point C corresponding to $(Z_{IN})_N$. The total input impedance is given by:

• Series Stubs: (a) (b) jΧ 50 Ω (Z_{sc})_N Z_{L} Z = 00 Z = 0 $(Z_{oc})_N$

- 1. Locate $(Z_L)_N$ on the Smith chart at point A, as shown in Figure 10.28 (use a Z-chart).
- 2. Draw the constant VSWR circle.
- From (Z_L)_N, travel a distance (d) toward the generator on the VSWR circle to arrive at point B.
- 4. Now, because we are adding the series stub, we travel on a constant resistance circle an amount equal to the reactance of the stub, jx, to arrive at point C.
- 5. The input impedance is read off at point C in Figure 10.28.

Consider a transmission line ($Z_o = 50~\Omega$) terminated in a load $Z_L = 15 + j10~\Omega$, as shown in Figure 10.29. Calculate the input impedance of the line where the shunt open stub is located a distance of $d = 0.044\lambda$ from the load and has a length of $\ell = 0.147\lambda$.

- **b.** Locate $(Z_L)_N = (15 + j10)/50 = 0.3 + j 0.2$ on the Smith chart (see point A in Figure 10.31).
- c. Draw the constant VSWR circle.
- **d.** From Z_L , travel a distance of 0.044 λ to arrive at point B. The admittance is read off to be:

$$(Y_B)_N = 1 - j1.33$$
 (point *B* in Figure 10.31)

Adding an open shunt stub of length $\ell = 0.147$ with $(Y_{oc})_N = j1.33$ gives:

$$(Y_{IN})_N = (Y_B)_N + (Y_{oc})_N = (1 - j1.33) + j1.33 = 1$$

$$(Z_{IN})_N = 1/(Y_{IN})_N = 1 \implies Z_{IN} = Z_o = 50 \Omega$$

- Smith Ch for Lumped Elements CKT
- I/P Imp for a series lumped element

$$Z_{IN} = Z_L + Z_S$$

$$(Z_{IN})_N = (r_L + r_S) + j(x_L + x_S)$$

Z Chart, since series

- **1.** Locate $(Z_L)_N$ on the Smith chart (see point A in Figure 10.36).
- 2. Moving on the constant resistance circle that passes through Z_L , add a reactance of jx_S to arrive at point B.
- 3. Now moving on a constant reactance circle that passes through point B, add a resistance of r_S to arrive at point C.
- 4. The input impedance value is read off at point C, using the Z-chart markings.

I/P Admittance For a shunt lumped element

$$Y_{IN} = Y_L + Y_P$$
$$(Y_{IN})_N = (g_L + g_P) + j(b_L + b_P)$$

- **1.** Locate $(Y_L)_N$ on the Y-chart at point A in Figure 10.38.
- 2. Move on the constant conductance circle that passes through $(Y_L)_N$ and add a susceptance of jb_P to arrive at point B.
- Move on the constant susceptance circle (passing through B) by adding a conductance of g_P to arrive at point C.
- 4. The input admittance is read off at point C using the Y-chart markings.

