### **Cellular Wireless Networks and GSM Architecture**

#### S.M. Riazul Islam, PhD

#### **Desirable Features**

- More Capacity
- Less Power
- Larger Coverage

## **Cellular Network Organization**

- Multiple low power transmitters —100w or less
- Area divided into cells
  - -Each with own antenna
  - -Each with own range of frequencies
  - -Served by base station
    - Transmitter, receiver, control unit
  - Adjacent cells on different frequencies to avoid crosstalk

## **Shape of Cells**

- Square
  - Width  $d \operatorname{cell}$  has four neighbours at distance d and four at distance  $\sqrt{2} d$
  - Better if all adjacent antennas equidistant
    - Simplifies choosing and switching to new antenna
- Hexagon
  - Provides equidistant antennas
  - Radius defined as radius of circum-circle
    - Distance from centre to vertex equals length of side
  - Distance between centres of cells radius R is  $\sqrt{3}$  R
  - Not always precise hexagons
    - Topographical limitations
    - Local signal propagation conditions
    - Location of antennas

### **Cellular Geometries**





(a) Square pattern

(b) Hexagonal pattern

### **Frequency Reuse**

- Power of base transceiver controlled
  - Allow communications within cell on given frequency
  - Limit escaping power to adjacent cells
  - Allow re-use of frequencies in nearby cells
  - Use same frequency for multiple conversations
  - 10 50 frequencies per cell
- *E.g.* 
  - *N* cells all using same number of frequencies
  - -K total number of frequencies used in systems
  - Each cell has K/N frequencies
  - Advanced Mobile Phone Service (AMPS) K=395, N=7 giving 57 frequencies per cell on average

## **Characterizing Frequency Reuse**

- D = minimum distance between centers of cells that use the same band of frequencies (called cochannels)
- R = radius of a cell
- d = distance between centers of adjacent cells (d = R)
- N = number of cells in repetitious pattern
  - Reuse factor
  - Each cell in pattern uses unique band of frequencies
- Hexagonal cell pattern, following values of N possible

-  $N = I^2 + J^2 + (I \times J), I, J = 0, 1, 2, 3, ...$ 

- Possible values of N are 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, ...
- D/R=  $\sqrt{3N}$
- D/d =  $\sqrt{N}$

# Frequency Reuse Patterns



- (a) Frequency reuse pattern for N = 4
- (b) Frequency reuse pattern for N = 7



# **Increasing Capacity (1)**

- Add new channels
  - -Not all channels used to start with
- Frequency borrowing
  - -Taken from adjacent cells by congested cells
  - -Or assign frequencies dynamically
- Cell splitting
  - —Non-uniform distribution of topography and traffic
  - -Smaller cells in high use areas
    - Original cells 6.5 13 km
    - 1.5 km limit in general
    - More frequent handoff
    - More base stations

## **Cell Splitting**



# **Increasing Capacity (2)**

- Cell Sectoring
  - -Cell divided into wedge shaped sectors
  - -3 6 sectors per cell
  - -Each with own channel set
    - Subsets of cell's channels
  - -Directional antennas
- Microcells
  - Move antennas from tops of hills and large buildings to tops of small buildings and sides of large buildings
    - Even lamp posts
  - —Form microcells
  - -Reduced power
  - Good for city streets, along roads and inside large buildings

#### **Frequency Reuse Example**



# **Operation of Cellular Systems**

- Base station (BS) at center of each cell
  - Antenna, controller, transceivers
- Controller handles call process
  - Number of mobile units may in use at a time
- BS connected to mobile telecommunications switching office (MTSO)
  - One MTSO serves multiple BS
  - MTSO to BS link by wire or wireless
- MTSO:
  - Connects calls between mobile units and from mobile to fixed telecommunications network
  - Assigns voice channel
  - Performs handoffs
  - Monitors calls (billing)
- Fully automated

### **Overview of Cellular System**



#### **GSM Network Architecture**



### **GSM Network Architecture**



#### **Channels and GSM Frequency Bands**

- Control channels
  - Setting up and maintaining calls
  - Establish relationship between mobile unit and nearest BS
- Traffic channels
  - Carry voice and data

| GSM-850   | 850  | 824.2-849.2     | 869.2-894.2     | 128–251         | 5 |
|-----------|------|-----------------|-----------------|-----------------|---|
| P-GSM-900 | 900  | 890.0-915.0     | 935.0-960.0     | 1–124           |   |
| E-GSM-900 | 900  | 880.0-915.0     | 925.0-960.0     | 975–1023, 0-124 | 8 |
| R-GSM-900 | 900  | 876.0-915.0     | 921.0-960.0     | 955–1023, 0-124 |   |
| T-GSM-900 | 900  | 870.4-876.0     | 915.4-921.0     | dynamic^        |   |
| DCS-1800  | 1800 | 1,710.2–1,784.8 | 1,805.2–1,879.8 | 512-885         | 3 |
| PCS-1900  | 1900 | 1,850.2–1,909.8 | 1,930.2–1,989.8 | 512-810         | 2 |

P-GSM, Standard or Primary GSM-900 Band

E-GSM, Extended GSM-900 Band (includes Standard GSM-900 band)

### **Handoff Mechanism**

**Def:** Process of transferring an ongoing call or data session from one channel connected to the core network to another channel

**Hard Handoff:** channel in the source cell is released and only then the channel in the target cell is engaged.

**Soft Handoff:** the channel in the source cell is retained and used for a while in parallel with the channel in the target cell

